Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines.

نویسندگان

  • W M J Batten
  • M E Harrison
  • A S Bahaj
چکیده

The actuator disc-RANS model has widely been used in wind and tidal energy to predict the wake of a horizontal axis turbine. The model is appropriate where large-scale effects of the turbine on a flow are of interest, for example, when considering environmental impacts, or arrays of devices. The accuracy of the model for modelling the wake of tidal stream turbines has not been demonstrated, and flow predictions presented in the literature for similar modelled scenarios vary significantly. This paper compares the results of the actuator disc-RANS model, where the turbine forces have been derived using a blade-element approach, to experimental data measured in the wake of a scaled turbine. It also compares the results with those of a simpler uniform actuator disc model. The comparisons show that the model is accurate and can predict up to 94 per cent of the variation in the experimental velocity data measured on the centreline of the wake, therefore demonstrating that the actuator disc-RANS model is an accurate approach for modelling a turbine wake, and a conservative approach to predict performance and loads. It can therefore be applied to similar scenarios with confidence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental characterization of the near-wake of a cross flow water turbine with LDV measurement

Recent developments in tidal energy converter technology and turbine array projects require fast and robust simulation tools. An important challenge is now estimating the power production for a array of machines as well as optimizing the placement within a grid. The most common method to do so is the coupling of momentum sources with a flow simulation. This method, called the actuator disc mode...

متن کامل

Reaching the betz limit experimentally and numerically

The Betz theory expresses that no horizontal axis wind turbine can extract more than 16/27 (59.3%) of the kinetic energy of the wind. The factor 16/27 (0.593) is known as the Betz limit. Horizontal Axis wind turbine designers try to improve the power performance to reach the Betz limit. Modern operational wind turbines achieve at peak 75% to 80% of the Betz limit. In 1919, Albert Betz used an a...

متن کامل

Actuator line modeling of vertical-axis turbines

To bridge the gap between high and low fidelity numerical modeling tools for vertical-axis (or cross-flow) turbines (VATs or CFTs), an actuator line model (ALM) was developed and validated for both a high and a medium solidity vertical-axis turbine at rotor diameter Reynolds numbersReD ∼ 10. The ALM is a combination of classical blade element theory and Navier–Stokes based flow models, and in t...

متن کامل

Airfoil data sensitivity analysis for actuator disc simulations used in wind turbine applications

To analyse the sensitivity of blade geometry and airfoil characteristics on the prediction of performance characteristics of wind farms, large-eddy simulations using an actuator disc (ACD) method are performed for three different blade/airfoil configurations. The aim of the study is to determine how the mean characteristics of wake flow, mean power production and thrust depend on the choice of ...

متن کامل

Shaping array design of marine current energy converters through scaled experimental analysis

Marine current energy converters or tidal turbines represent an emerging renewable energy technology that can provide a predictable supply of electricity. Single devices are in operation around the world with aspirations to deploy farms or arrays of multiple devices. We present an experimental study that has characterised the downstream wake flow around a 1/15thscale turbine in a large circulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 371 1985  شماره 

صفحات  -

تاریخ انتشار 2013